For the first sum:
For $z = \frac12$ we have
$$\pi^2 = \frac{\pi^2}{\sin^2\frac{\pi}2} = \sum_{n\in\mathbb{Z}}\frac1{\left(n-\frac12\right)^2} = 4\sum_{n\in\mathbb{Z}}\frac1{(2n-1)^2} = 8\sum_{\substack{k\in\mathbb{N} \\ k \text{ odd}}} \frac1{k^2}$$
$$\sum_{\substack{k\in\mathbb{N} \\ k \text{ even}}} \frac1{k^2} = \sum_{\substack{k\in\mathbb{N}}} \frac1{(2k)^2} = \frac14 \sum_{k\in\mathbb{N}} \frac1{k^2}$$
$$S = \sum_{\substack{k\in\mathbb{N}}} \frac1{k^2} = \sum_{\substack{k\in\mathbb{N} \\ k \text{ even}}} \frac1{k^2} + \sum_{\substack{k\in\mathbb{N} \\ k \text{ odd}}} \frac1{k^2} = \frac14 S + \frac{\pi^2}8 \implies S = \frac{\pi^2}6$$
For the second sum differentiate the original series twice:
$$\sum_{n\in\mathbb{Z}} \frac1{(z-n)^2} = \frac{\pi^2}{\sin^2 \pi z}$$
$$-2\sum_{n\in\mathbb{Z}} \frac1{(z-n)^3} = -\frac{2\pi^3\cos \pi z}{\sin^3 \pi z}$$
$$6\sum_{n\in\mathbb{Z}} \frac1{(z-n)^4} = \frac{2\pi^4(\sin^2 \pi z + 3\cos^2\pi z)}{\sin^4 \pi z} = \frac{2\pi^4(2 + \cos(2\pi z))}{\sin^4 \pi z}$$
So $\sum_{n\in\mathbb{Z}} \frac1{(z-n)^4} = \frac{\pi^4(2 + \cos(2\pi z))}{3\sin^4 \pi z}$. Again pluggin in $z = \frac12$ gives
$$\frac{\pi^4}3 = \frac{\pi^4(2 + \cos\pi)}{3\sin^4 \frac\pi2} = \sum_{n\in\mathbb{Z}}\frac1{\left(n-\frac12\right)^4} = 16\sum_{n\in\mathbb{Z}}\frac1{(2n-1)^4} = 32\sum_{\substack{k\in\mathbb{N} \\ k \text{ odd}}} \frac1{k^4}$$
$$\sum_{\substack{k\in\mathbb{N} \\ k \text{ even}}} \frac1{k^4} = \sum_{\substack{k\in\mathbb{N}}} \frac1{(2k)^4} = \frac1{16} \sum_{k\in\mathbb{N}} \frac1{k^4}$$
$$S = \sum_{\substack{k\in\mathbb{N}}} \frac1{k^4} = \sum_{\substack{k\in\mathbb{N} \\ k \text{ even}}} \frac1{k^4} + \sum_{\substack{k\in\mathbb{N} \\ k \text{ odd}}} \frac1{k^4} = \frac1{16} S + \frac{\pi^4}{3\cdot 32} \implies S = \frac{\pi^4}{90}$$