Recently I run into this integral
$$\mathcal{J} = \int_{0}^{\pi/2} \frac{x \log \left ( 1-\sin x \right )}{\sin x} \, \mathrm{d}x$$
I don't know to what it evaluates. I tried several approaches.
1st: Differentiation under the integral sign
Consider the function $\displaystyle f(\alpha)= \int_{0}^{\pi/2} \frac{x \log \left ( 1-\alpha\sin x \right )}{\sin x} \, \mathrm{d}x$. Hence
\begin{align*} \frac{\mathrm{d} }{\mathrm{d} \alpha} f(\alpha) &= \frac{\mathrm{d} }{\mathrm{d} \alpha} \int_{0}^{\pi/2} \frac{x \log \left ( 1-\alpha\sin x \right )}{\sin x} \, \mathrm{d}x \\ &= \int_{0}^{\pi/2} \frac{\partial }{\partial \alpha} \frac{x \log \left ( 1-\alpha\sin x \right )}{\sin x} \, \mathrm{d}x \\ &= -\int_{0}^{\pi/2} \frac{x \sin x}{\sin x \left ( 1- \alpha \sin x \right )} \, \mathrm{d}x\\ &=- \int_{0}^{\pi/2} \frac{x}{1- \alpha \sin x} \, \mathrm{d}x \end{align*}
And the last integral equals?
2nd: Taylor series expansion
Lemma: It holds that
$$x \sin^n x = \left\{\begin{matrix} 2^{1-n}\displaystyle\mathop{\sum}\limits_{k=0}^{\frac{n-1}{2}}(-1)^{\frac{n-1}{2}-k}\binom{n}{k}\,x\sin\big((n-2k)x\big) & , & n \;\; \text{odd} \\\\ 2^{-n}\displaystyle\binom{n}{\frac{n}{2}}\,x+2^{1-n}\mathop{\sum}\limits_{k=0}^{\frac{n}{2}-1}(-1)^{\frac{n}{2}-k}\binom{n}{k}\,x\cos\big((n-2k)x\big) & , & n \;\; \text{even} \end{matrix}\right.$$
Hence,
\begin{align*} \int_{0}^{\pi/2} \frac{x \log \left ( 1-\sin x \right )}{\sin x} \, \mathrm{d}x &= -\int_{0}^{\pi/2} \frac{x}{\sin x} \sum_{n=1}^{\infty} \frac{\sin^n x}{n} \, \mathrm{d}x \\ &=-\sum_{n=1}^{\infty} \frac{1}{n} \int_{0}^{\pi/2} x \sin^{n-1} x \, \mathrm{d}x \end{align*}
However the lemma does not help at all. In fact, if someone substitutes the RHS what it seems to be in there is an $\arcsin $ Taylor expansion. The series that remains to be evaluated is very daunting.
To sum up, I don't know to what this integral evaluates. I don't even know if a nice closed form exists neither do I expect one. But , I still hope.