As said in comments, the best you can do is just to compute terms.
$$S_p=\sum_{n=0}^{p}(-1)^n \tan(\frac{1}{n!})$$ will give the following table
$$\left(
\begin{array}{cc}
0 & 1.55740772465490223051 \\
1 & 0.00000000000000000000 \\
2 & 0.54630248984379051326 \\
3 & 0.37807527154154805200 \\
4 & 0.41976606761920965972 \\
5 & 0.41143254137928324024 \\
6 & 0.41282143116123408937 \\
7 & 0.41262301846021771374 \\
8 & 0.41264782004752438635 \\
9 & 0.41264506431560198078 \\
10 & 0.41264533988879422065 \\
11 & 0.41264531483668583521 \\
12 & 0.41264531692436153399 \\
13 & 0.41264531676377109562 \\
14 & 0.41264531677524184122 \\
15 & 0.41264531677447712485 \\
16 & 0.41264531677452491962 \\
17 & 0.41264531677452210817 \\
18 & 0.41264531677452226436 \\
19 & 0.41264531677452225614 \\
20 & 0.41264531677452225655 \\
21 & 0.41264531677452225653
\end{array}
\right)$$ which not recognized by inverse symbolic calculators.
What would be interesting to know is : how many $p$ terms are to be added to get $k$ exact significant figures ? Since it is an alternating series, we need to solve
$$\tan(\frac{1}{(p+1)!}) < 10^{-k}$$ and since $\tan(\epsilon)\approx \epsilon$, this reduces to $(p+1)! >10^k$.
If you look here, using $a=1$, @robjohn's fantastic approximation would write
$${p\sim e\exp\left(\operatorname{W}\left(\frac{2k\log(10)-\log(2\pi)}{2e} \right)\right)-\frac32}$$ and then the results
$$\left(
\begin{array}{cc}
k & \lceil p\rceil \\
10 & 13 \\
20 & 21 \\
30 & 28 \\
40 & 34 \\
50 & 41 \\
60 & 47 \\
70 & 53 \\
80 & 58 \\
90 & 64 \\
100 & 69 \\
200 & 120 \\
300 & 166 \\
400 & 210 \\
500 & 253 \\
600 & 294 \\
700 & 334 \\
800 & 373 \\
900 & 411 \\
1000 & 449
\end{array}
\right)$$