I would like to evaluate this integral, $$I=\int_{0}^{1}\ln\left(\frac{a-x^2}{a+x^2}\right)\cdot\frac{\mathrm dx}{x^2\sqrt{1-x^2}}$$
An approach: 1. Using integration by parts
$u=\ln\left(\frac{a-x^2}{a+x^2}\right)$, $du=\frac{x^2+a}{x^2-a}\left[\frac{2x}{a+x^2}+\frac{2x(a-x^2)}{a+x^2}\right]dx$
$dv=\frac{dx}{x^2\sqrt{1-x^2}}$, $v=-\frac{\sqrt{1-x^2}}{x}$
$$I=2\int_{0}^{1}\frac{\sqrt{1-x^2}}{x^2+a}dx-2\int_{0}^{1}\frac{\sqrt{1-x^2}}{x^2-a}dx=2I_1-2I_2$$
Integral $I_1$: Make a substitution of: $x=\sin(v)$, $v=\arcsin(x)$, $dx=\cos(v)dv$
$$I_1=\int_{0}^{\pi/2}\frac{\cos^2(v)}{a+\sin^2(v)}dv$$
Using trig to rewrite: $$I_1=\int_{0}^{\pi/2}\sec^2(v)\frac{dv}{[1+\tan^2(v)][(a+1)\tan^2(v)+a]}$$
Make another substitiution of: $v=\tan(y)$, $dy=\frac{1}{\sec^2(v)}dv$ and using partial fraction decomp:
$$I_1=(a+1)\int_{0}^{\infty}\frac{dy}{a+(a+1)y^2}-\frac{\pi}{2}=(a+1)I_3-\frac{\pi}{2}$$
With this substitution: $t=\frac{\sqrt{a+1}}{\sqrt{a}}y$, $dy=\frac{\sqrt{a}}{\sqrt{a+1}}dt$
$$I_3=\frac{1}{\sqrt{a(a+1)}}\cdot \frac{\pi}{2}$$
$$I_1=\frac{\pi}{2}\left(\frac{\sqrt{a+1}}{\sqrt{a}}-1\right)$$
In the same manner, $$I_2=\frac{\pi}{2}\left(\frac{\sqrt{a-1}}{\sqrt{a}}-1\right)$$
Finally, $$I=\pi\left(\frac{\sqrt{a-1}-\sqrt{a+1}}{\sqrt{a}}\right)$$
I am looking for another short approach of evaluating integral $I$