Satrting from saulspatz's answer, it is sure that, using a good estimate, Newton method would converge in very few iterations provided of a good guess for the root.
The first thing I thought about was to set $\theta=2t$, $k=\frac{s}{a}$ and use the rather good approximation
$$\cos(t) \simeq\frac{\pi ^2-4t^2}{\pi ^2+t^2}\qquad (-\frac \pi 2 \leq t\leq\frac \pi 2)$$ This leads to
$$t(2 k t^2+2 \pi ^2 k-5 t)=0 \implies \theta_{est}=\frac{5-\sqrt{25-16 \pi ^2 k^2}}{2 k}$$ In order to check it, give $\theta$ a value, compute $k$ and compute $ \theta_{est}$. The table below shows some results
$$\left(
\begin{array}{ccc}
\theta & k & \theta_{est} \\
0.1 & 0.0124973961 & 0.0987 \\
0.2 & 0.0249791736 & 0.1974 \\
0.3 & 0.0374297402 & 0.2962\\
0.4 & 0.0498335554 & 0.3950 \\
0.5 & 0.0621751566 & 0.4939 \\
0.6 & 0.0744391848 & 0.5930 \\
0.7 & 0.0866104102 & 0.6921 \\
0.8 & 0.0986737575 & 0.7915 \\
0.9 & 0.1106143307 & 0.8909 \\
1.0 & 0.1224174381 & 0.9906 \\
1.1 & 0.1340686163 & 1.0904 \\
1.2 & 0.1455536542 & 1.1905 \\
1.3 & 0.1568586165 & 1.2908 \\
1.4 & 0.1679698662 & 1.3913 \\
1.5 & 0.1788740874 & 1.4920
\end{array}
\right)$$ and, starting from the estimate $\theta_{0}=\theta_{est}$, Newton iterates
$$\theta_{n+1}=\frac{\theta_n \sin \left(\frac{\theta_n }{2}\right)+2 \cos \left(\frac{\theta_n
}{2}\right)-2}{\sin \left(\frac{\theta_n }{2}\right)-2 k}$$ would converge in very few iterations.
My next idea was to develop $\frac{1-\cos\left(\frac{\theta}{2}\right)}{\theta}$ as Taylor series built at $\theta=0$ giving
$$\frac{1-\cos\left(\frac{\theta}{2}\right)}{\theta}=\frac{\theta }{8}-\frac{\theta ^3}{384}+\frac{\theta ^5}{46080}-\frac{\theta
^7}{10321920}+\frac{\theta ^9}{3715891200}-\frac{\theta
^{11}}{1961990553600}+O\left(\theta ^{13}\right)$$ and to use series reversion to get
$$\theta=8 k+\frac{32 k^3}{3}+\frac{1664 k^5}{45}+\frac{159232 k^7}{945}+\frac{4139008
k^9}{4725}+\frac{21929984 k^{11}}{4455}+O\left(k^{13}\right)$$ which could be transformed as a Padé approximant such as
$$\theta_{est}=k\,\frac{8 -\frac{13184 }{279}k^2+\frac{200192 }{5859}k^4 } {1-\frac{2020 }{279}k^2+\frac{272512 }{29295}k^4 }$$ Doing the same as before, we should get
$$\left(
\begin{array}{ccc}
\theta & k & \theta_{est} \\
0.1 & 0.0124973961 & 0.100000000000 \\
0.2 & 0.0249791736 & 0.200000000000 \\
0.3 & 0.0374297402 & 0.300000000000 \\
0.4 & 0.0498335554 & 0.399999999999 \\
0.5 & 0.0621751566 & 0.499999999991 \\
0.6 & 0.0744391848 & 0.599999999936 \\
0.7 & 0.0866104102 & 0.699999999650 \\
0.8 & 0.0986737575 & 0.799999998468 \\
0.9 & 0.1106143307 & 0.899999994352 \\
1.0 & 0.1224174381 & 0.999999981810 \\
1.1 & 0.1340686163 & 1.099999947499 \\
1.2 & 0.1455536542 & 1.199999861547 \\
1.3 & 0.1568586165 & 1.299999661478 \\
1.4 & 0.1679698662 & 1.399999223847 \\
1.5 & 0.1788740874 & 1.499998316221
\end{array}
\right)$$ which seems to be quite good.
Using the same form, I tried to optimize the coefficients for a better fit over the wole range. What I obtained is
$$\theta_{est}=k\,\frac{8-\frac{100815 }{2003}k^2+\frac{26153}{635} k^4}{ 1-\frac{5467 }{717}k^2+\frac{5955}{557}k^4}$$ Reproducing the same table
$$\left(
\begin{array}{ccc}
\theta & k & \theta_{est} \\
0.1 & 0.0124973961 & 0.0999999999 \\
0.2 & 0.0249791736 & 0.1999999991 \\
0.3 & 0.0374297402 & 0.2999999973 \\
0.4 & 0.0498335554 & 0.3999999947 \\
0.5 & 0.0621751566 & 0.4999999918 \\
0.6 & 0.0744391848 & 0.5999999895 \\
0.7 & 0.0866104102 & 0.6999999885 \\
0.8 & 0.0986737575 & 0.7999999886 \\
0.9 & 0.1106143307 & 0.8999999893 \\
1.0 & 0.1224174381 & 0.9999999891 \\
1.1 & 0.1340686163 & 1.0999999871 \\
1.2 & 0.1455536542 & 1.1999999836 \\
1.3 & 0.1568586165 & 1.2999999814 \\
1.4 & 0.1679698662 & 1.3999999835 \\
1.5 & 0.1788740874 & 1.4999999861
\end{array}
\right)$$
Update
In order to cover the full range $(0\leq \theta \leq \pi)$ and to get solutions at the price of only a quadratic equation, we can guess the approximation
$$\frac{1-\cos\left(\frac{\theta}{2}\right)}{\theta}=\frac{a\theta+b \theta^2 } {1+c\theta+d \theta^2 }$$ and compute the coefficients $a,b,c,d$ in order to have a perfect match at points $\frac \pi 4,\frac \pi 2,\frac {3\pi} 4,\pi$. This gives the nasty values
$$a=\frac{52-71 \sqrt{2}+6 \sqrt{10642-7001 \sqrt{2}}}{93 \pi ^2}$$
$$b=\frac{4 \left(26+11 \sqrt{2}-6 \sqrt{754-487 \sqrt{2}}\right)}{93 \pi ^3}$$
$$c=\frac{-325+33 \sqrt{2}+6 \sqrt{2074-167 \sqrt{2}}}{93 \pi }$$
$$d=-\frac{2 \left(-194+30 \sqrt{2}+3 \sqrt{2756-322 \sqrt{2}}\right)}{93 \pi ^2}$$ and the retained solution of the quadratic in $\theta$ is given by
$$ \theta_{est}=\frac{\sqrt{(a-c k)^2+4 k (b-d k)}-a+c k}{2 (b-d k)}$$
$$\left(
\begin{array}{ccc}
\theta & k & \theta_{est} \\
0.0 & 0.000000 & 0.00000 \\
0.1 & 0.012497 & 0.09987 \\
0.2 & 0.024979 & 0.19981 \\
0.3 & 0.037430 & 0.29980 \\
0.4 & 0.049834 & 0.39982 \\
0.5 & 0.062175 & 0.49986 \\
0.6 & 0.074439 & 0.59991 \\
0.7 & 0.086610 & 0.69996 \\
0.8 & 0.098674 & 0.80001 \\
0.9 & 0.110614 & 0.90005 \\
1.0 & 0.122417 & 1.00007 \\
1.1 & 0.134069 & 1.10009 \\
1.2 & 0.145554 & 1.20009 \\
1.3 & 0.156859 & 1.30007 \\
1.4 & 0.167970 & 1.40005 \\
1.5 & 0.178874 & 1.50002 \\
1.6 & 0.189558 & 1.59999 \\
1.7 & 0.200010 & 1.69996 \\
1.8 & 0.210217 & 1.79993 \\
1.9 & 0.220167 & 1.89991 \\
2.0 & 0.229849 & 1.99990 \\
2.1 & 0.239252 & 2.09990 \\
2.2 & 0.248365 & 2.19993 \\
2.3 & 0.257179 & 2.29997 \\
2.4 & 0.265684 & 2.40003 \\
2.5 & 0.273871 & 2.50010 \\
2.6 & 0.281731 & 2.60018 \\
2.7 & 0.289257 & 2.70026 \\
2.8 & 0.296440 & 2.80032 \\
2.9 & 0.303275 & 2.90034 \\
3.0 & 0.309754 & 3.00028 \\
3.1 & 0.315873 & 3.10012
\end{array}
\right)$$