Find the Remainder when $333^{333}$ is divided by $7$
I think I have to find $333^{333}\equiv r \pmod7$ where $r(\ge0)$ is the remainder but how do I get in that form
Find the Remainder when $333^{333}$ is divided by $7$
I think I have to find $333^{333}\equiv r \pmod7$ where $r(\ge0)$ is the remainder but how do I get in that form
Note that by FLT
$$333^6\equiv 1 \mod 7$$
thus
$$333^{333}\equiv 333^{3}\equiv 4^{3} \mod 7$$
$$333\equiv2^2\pmod7$$
and$$333\equiv3\pmod{\phi(7)}$$
$$\implies333^{333}\equiv(2^2)^3\equiv?\pmod7$$
$$333^{333}=(336-3)^{333}\equiv(-3)^{333}=-27^{111}\equiv-(-1)^{111}=1.$$