Data:
- $P(B\mid A)=0.99$
- $P(B\mid A^{\complement})=0.10$
- $P(A)=0.05$
To be found are:
- $P(A^{\complement}\cap B)$
- $P(A\cap B^{\complement})$
Calculations:
$P(A^{\complement}\cap B)=P(B\mid A^{\complement})P(A^{\complement})=P(B\mid A^{\complement})(1-P(A))=0.10\times(1-0.05)$
$P(A\cap B^{\complement})=P(B^{\complement}\mid A)P(A)=(1-P(B\mid A))P(A)=(1-0.99)\times0.05$
The last sequence of equalities in your question cannot be recognized as an application of Bayes rule. It is not more than just stating that: $$P(A)P(B^{\complement}\mid A)=P(A\cap B^{\complement})=P(B^{\complement})P(A\mid B^{\complement})\tag1$$
We can also find: $$P(B^{\complement})=1-P(B)=1-[P(B\mid A)P(A)+P(B\mid A^{\complement})P(A^{\complement})]=$$$$1-[P(B\mid A)P(A)+P(B\mid A^{\complement})(1-P(A)]=$$$$1-[0.99\times0.05+0.10\times(1-0.05)]$$
And combining this with $(1)$ we can find $P(A\mid B^{\complement})=\frac{P(A\cap B^{\complement})}{P(B^{\complement})}$.
But actually there is no need for finding $P(B^{\complement})$ and $P(A\mid B^{\complement})$
It is not clear to me how you found your expressions for $P(B^{\complement})$ and $P(A\mid B^{\complement})$
edit:
Your calculation of $P(B^{\complement})$ is clear now and correct. Both answers match.