Let $X, Y$ be two i.i.d.$\sim\mathcal{N}(0,1)$ random variables, I need to compute $E(\exp(sXY))$ for $s \geq 0$.
Since they are independent the joint pdf $f_{XY}= \frac{1}{2\pi}\exp(-\frac{x^2+y^2}{2})$, but how do I compute $$ \frac{1}{2\pi}\int_{\mathbb{R}}\int_{\mathbb{R}} \exp(sxy)\exp(-\frac{x^2+y^2}{2})dxdy$$ This is my current approach, but I am uncertain about a few steps: $ \begin{align} \frac{1}{2\pi} \int_{\mathbb{R}}\exp(-\frac{y^2}{2})\int_{\mathbb{R}}\exp{\frac{-(x+sy)^2}{2}}\exp{\frac{s^2y^2}{2}}dxdy &= \frac{1}{\sqrt{2\pi}}\int_{\mathbb{R}}\exp{(\frac{-y^2}{2})}\exp{\frac{s^2y^2}{2}}dy \\ &= \frac{1}{\sqrt{2\pi}}\int_{\mathbb{R}}\exp{(-y^2\cdot(\frac{1-s^2}{2}))}\\ &=\frac{1}{\sqrt{1-s^2}} \end{align}$
Is it correct? Can I just consider sy fixed in the first integration and pretend it is the expectation of the inner normal r.v.?