Every Lebesgue-measurable additive function $f \colon \mathbb{R} \to \mathbb{R}$ is contiuous, so the Lebesgue-measurable $\mathbb{Q}$-automorphisms of $\mathbb{R}$ are precisely the $\mathbb{R}$-automorphisms of $\mathbb{R}$, i.e. the $x \mapsto cx$ for $c\in \mathbb{R}\setminus \{0\}$.
Since there are $2^{\mathfrak{c}} > \mathfrak{c}$ $\mathbb{Q}$-automorphisms of $\mathbb{R}$ (every permutation of a Hamel basis induces a $\mathbb{Q}$-automorphism, and there are $2^{\mathfrak{c}}$ of those; on the other hand there are only $2^{\mathfrak{c}}$ maps $\mathbb{R}\to \mathbb{R}$), most - in the cardinality sense - $\mathbb{Q}$-automorphisms of $\mathbb{R}$ are not Lebesgue-measurable.