Additum
Recently I have come across Ramanujan's Master Theorem. This Theorem provides an elegant way to show the given relation. Therefore lets write the Gaussian Hypergeometric Function as infinite power series
$$_2F_1(\alpha,\beta;\gamma;-x)=\sum_{k=0}^{\infty}\frac{\Gamma(\alpha+k)}{\Gamma(\alpha)}\frac{\Gamma(\beta+k)}{\Gamma(\beta)}\frac{\Gamma(\gamma)}{\Gamma(\gamma+k)}\frac{(-x)^k}{k!}=\sum_{k=0}^{\infty}\phi(k)\frac{(-x)^k}{k!}$$
For an analytic function $f(x)$ which is in the form of the last sum - especially with some $\phi(k)$ and a negative $x$ argument - the Mellin Transform of this function is given by
$$\int_0^{\infty}x^{s-1}f(x)dx=\Gamma(s)\phi(-s)$$
From hereon by plugging in $_2F_1(\alpha,\beta;\gamma;-x)$ as $f(x)$ we get
$$\begin{align}
\int_0^{\infty}x^{s-1}~_2F_1(\alpha,\beta;\gamma;-x)dx~&=~\Gamma(s)\phi(-s)\\
&=~\Gamma(s)\frac{\Gamma(\alpha-s)}{\Gamma(\alpha)}\frac{\Gamma(\beta-s)}{\Gamma(\beta)}\frac{\Gamma(\gamma)}{\Gamma(\gamma-s)}\\
&=~\frac{\Gamma(s)\Gamma(\alpha-s)}{\Gamma(\alpha)}\frac{\Gamma(s)\Gamma(\beta-s)}{\Gamma(\beta)}\frac{\Gamma(\gamma)}{\Gamma(s)\Gamma(\gamma-s)}\\
&=~\frac{B(s,\alpha-s)B(s,\beta-s)}{B(s,\gamma-s)}
\end{align}$$
$$\therefore~\mathcal M [_2F_1(\alpha,\beta;\gamma;-x)] = \frac {B(s,\alpha-s)B(s,\beta-s)}{B(s,\gamma-s)}$$