Let us consider (in spherical coordinates) the expression
Great arc distance between two points on a unit sphere
$$d({\bf v}_1,{\bf v}_2)=\cos^{-1}\left(\cos\theta_1\cos\theta_2+\sin\theta_1\sin\theta_2\cos\left(\varphi_1-\varphi_2\right)\right) \qquad (1)$$ that gives the geodesic distance between two points $${\bf v}_i=(\sin\theta_i\cos\varphi_i,\sin\theta_i\sin\varphi_i,\cos\theta_i)$$ on the unit sphere $S$.
A question:
Assume $\,{\bf v}_i\in C\,$ where $\,C\,$ is the circle $\, \left\{\theta=\pi/4 \right\}\cap S\,$. The pole (the origin of the spherical coordinate system) is still the center of the sphere of course.
Then $\,\theta_1=\theta_2=\frac{\pi}{4}\,$ and, by (1), we have $$d({\bf v}_1,{\bf v}_2)=\cos^{-1}\left(\frac{1}{2}+\frac{1}{2}\cos\left(\varphi_1-\varphi_2\right)\right)=\cos^{-1}\left(\frac{1}{2}+\frac{1}{2}\cos\left(\varphi_1-\varphi_2\right)\right)=\\ =\cos^{-1}\left(\cos^{2}\frac{\varphi_1-\varphi_2}{2}\right)$$.
On the other hand, the radius of $C$ is $\frac{1}{2}$. So the arc length between $\,{\bf v}_1,\,{\bf v}_2\,$ should also be $$\text{radius of}\;\;C\times |\varphi_1-\varphi_2|= \frac{|\varphi_1-\varphi_2|}{2}$$
My problem is $$\cos^{-1}\left(\cos^{2}\frac{\varphi_1-\varphi_2}{2}\right)\not\equiv \frac{|\varphi_1-\varphi_2|}{2}$$ Take for instance $\varphi_1=\pi/2$, $\varphi_2=0$. Then $\cos^{-1}\left(\cos^{2}\frac{\varphi_1-\varphi_2}{2}\right)=\frac{\pi}{3}$ while $\frac{\varphi_1-\varphi_2}{2}=\frac{\pi}{4}$.
Where am I mistaken ?
Thanks