Summary of results:
If
$c^2 = (x_1^2+y_1^2)/R^2$
then
$x=\dfrac{x_1\pm y_1\sqrt{c^2-1}}{c^2}$
and
$y=\dfrac{y_1\mp x_1\sqrt{c^2-1}}{c^2}$.
Suppose
$(x_2, y_2)$
is a point on the circle,
so
$x_2^2+y^2_2 = R^2$.
The line from
$(x_1, y_1)$
to
$(x_2, y_2)$
is
$\dfrac{y-y_1}{x-x_1}
=\dfrac{y_2-y_1}{x_2-x_1}
$
or
$(y-y_1)dx = (x-x_1)dy$
where
$dx = x_2-x_1$
and
$dy = y_2-y_1$.
The slope of this line is
$\dfrac{dy}{dx}$.
The slope of the line from
$(0, 0)$
to
$(x_2, y_2)$
is
$\dfrac{y_2}{x_2}$.
For the line to be a tangent,
the product of these slopes
must be $-1$,
so that
$-1
=\dfrac{y_2}{x_2}\dfrac{dy}{dx}
$
or
$(y_2-y_1)y_2
=-(x_2-x_1)x_2
$
so
$y_2^2+x_2^2
=y_1y_2+x_1x_2
$.
Since
$y_2^2+x_2^2 = R^2$,
$R^2
=y_1y_2+x_1x_2
$.
Removing the
"$_2$",
the equations are
$x^2+y^2 = R^2$
and
$xx_1+yy_1 = R^2$.
from the second,
$y = (R^2-xx_1)/y_1$.
Substituting in the first,
$\begin{array}\\
x^2
&=R^2-y^2\\
&=R^2-((R^2-xx_1)/y_1)^2\\
\text{or}\\
x^2y_1^2
&=y_1^2R^2-(R^2-xx_1)^2\\
&=y_1^2R^2-(R^4-2xx_1R^2+x^2x_1^2)\\
&=y_1^2R^2-R^4+2xx_1R^2-x^2x_1^2\\
\end{array}
$
so
$0
=x^2(y_1^2+x_1^2)-2xx_1R^2+R^4-y_1^2R^2
=dx^2-2xx_1R^2+R^4-y_1^2R^2
$
where
$d=y_1^2+x_1^2$.
Solving,
$\begin{array}\\
x
&=\dfrac{2x_1R^2\pm\sqrt{4x_1^2R^4-4d(R^4-y_1^2R^2)}}{2d}\\
&=\dfrac{x_1R^2\pm R\sqrt{x_1^2R^2-d(R^2-y_1^2)}}{d}\\
&=\dfrac{x_1R^2\pm R\sqrt{x_1^2R^2-dR^2+dy_1^2)}}{d}\\
&=\dfrac{x_1R^2\pm R\sqrt{(x_1^2-d)R^2+dy_1^2)}}{d}\\
&=R\dfrac{x_1R\pm\sqrt{-y_1^2R^2+dy_1^2)}}{d}\\
&=R\dfrac{x_1R\pm\sqrt{y_1^2(x_1^2+y_1^2-R^2)}}{x_1^2+y_1^2}\\
&=R\dfrac{x_1R\pm\sqrt{y_1^2(c^2R^2-R^2)}}{c^2R^2}
\qquad\text{where }c^2 = (x_1^2+y_1^2)/R^2\\
&=\dfrac{x_1\pm\sqrt{y_1^2(c^2-1)}}{c^2}\\
&=\dfrac{x_1\pm y_1\sqrt{c^2-1}}{c^2}\\
\text{and}\\
y
&=(R^2-xx_1)/y_1\\
&=((x_1^2+y_1^2)/c^2-(\dfrac{x_1\pm y_1\sqrt{c^2-1}}{c^2})x_1)/y_1\\
&=\dfrac{x_1^2+y_1^2-x_1^2\mp x_1y_1\sqrt{c^2-1}}{c^2y_1}\\
&=\dfrac{y_1^2\mp x_1y_1\sqrt{c^2-1}}{c^2y_1}\\
&=\dfrac{y_1\mp x_1\sqrt{c^2-1}}{c^2}\\
\end{array}
$
As a check,
if
$(x_1, y_1)$
is on the circle
so that $c^2 = 1$,
then
$x=x_1
$
and
$y=y_1
$
which is comforting.
Note:
I found dimensional analysis
(making sure that
the exponent of length matched)
very useful in
checking my algebra
as I went along.