I already checked the question Does a median always exist?. But I am not convinced that the limits exist.
Say I want to show $m:=\inf\{x\in\mathbb{R}\mid\mathbb{P}(X\leq x)\geq \frac{1}{2}\}$. Then for $x_n$ decreasing sequence with $x_n \to m$ and $x_n>m$, we have:
$$\mathbb{P}(X\leq m)=\lim_{n\rightarrow \infty} \mathbb{P}(X\leq x_n)=F(m^+)\geq\frac{1}{2}.$$ Since $(-\infty,m]=\cap_n(-\infty,x_n)$.
Now for the other inequality: For $x<m$, $\mathbb{P}(X\leq x) < \frac{1}{2}$ since $m$ is the infimum. Now $x_n \to m$ increasing sequence and $\cup_n(-\infty,x_n]=(-\infty,m)$ since $m$ is in none of the sets $$\lim_{n\to< \infty}\mathbb{P}(X\leq x_n)=\mathbb{P}(X<m )<\frac{1}{2} \quad \text{or should it be $\leq$?}$$ and $\mathbb{P}(X\geq m)\geq \frac{1}{2}$