can anyone tell me, if this proof is correct:
for every $\epsilon>0$ there is a $\delta>0$ such that whenever $|x-1| < \delta$, then $|f(x)-f(1)| < \epsilon$. $|\ln(x)-\ln(1)|=|\ln(x)| < |\ln(0.5)| < \epsilon$ So: $δ=0.5$, $\epsilon > |\ln(0.5)|$
can anyone tell me, if this proof is correct:
for every $\epsilon>0$ there is a $\delta>0$ such that whenever $|x-1| < \delta$, then $|f(x)-f(1)| < \epsilon$. $|\ln(x)-\ln(1)|=|\ln(x)| < |\ln(0.5)| < \epsilon$ So: $δ=0.5$, $\epsilon > |\ln(0.5)|$
You want $|\ln x| < \epsilon$, so $\ln x < \epsilon$ when $x \ge 1$ and $\ln x > -\epsilon$ when $x < 1$. So, if $x \ge 1$, then you need $x < e^\epsilon$ and if $x < 1$, you need $x > e^{-\epsilon}$. So, $\delta < \text{min}\left(e^\epsilon-1, 1-e^{-\epsilon}\right)$.
– SlipEternal Jun 19 '18 at 16:39