Solving $determinant(A-\lambda I)=0$ gives roots will imply that $\lambda=\frac{1 \pm \sqrt{5}}{2}$. You then $rref(A-(\frac{1+\sqrt{5}}{2})I)= \begin{bmatrix}
1 & -\frac{1 + \sqrt{5}}{2} \\
0 & 0
\end{bmatrix}$. Say $x_2=t$. Thus, $x_1=t(\frac{1 + \sqrt{5}}{2})$.
Hence, $\begin{bmatrix}
1 & 1 \\
1 & 0
\end{bmatrix}\begin{bmatrix}
t(\frac{1 + \sqrt{5}}{2}) \\
t
\end{bmatrix}=\begin{bmatrix}
t(\frac{1 + \sqrt{5}}{2})+t\\
t(\frac{1 + \sqrt{5}}{2})
\end{bmatrix}=\frac{1+\sqrt{5}}{2}\begin{bmatrix}
t(\frac{1 + \sqrt{5}}{2})\\
t
\end{bmatrix}$ (I know the last two matrices was a big jump; I'll leave that to you.)
Analgously to the first root, $rref(A-(\frac{1-\sqrt{5}}{2})I)=\begin{bmatrix}
1 & -\frac{1-\sqrt{5}}{2}\\
0 & 0
\end{bmatrix}$.
Similarly, we figure (that being the hence part) $\begin{bmatrix}
1 & 1 \\
1 & 0
\end{bmatrix}\begin{bmatrix}
t(\frac{1 - \sqrt{5}}{2}) \\
t
\end{bmatrix}=\frac{1-\sqrt{5}}{2}\begin{bmatrix}
\frac{1-\sqrt{5}}{2}t\\
t
\end{bmatrix}$.
So find a $t$ that is not linearly dependent (zero would be bad) for this equation like $2$ and this will be your end result: $A^n=A(n,t)=\begin{bmatrix}
t\frac{1+\sqrt{5}}{2} & t\frac{1-\sqrt{5}}{2}\\
t & t
\end{bmatrix}\begin{bmatrix}
(\frac{1+\sqrt{5}}{2})^n & 0\\
0 & (\frac{1-\sqrt{5}}{2})^n
\end{bmatrix} \begin{bmatrix}
t(\frac{1+\sqrt{5}}{2}) & t(\frac{1-\sqrt{5}}{2})\\
t & t
\end{bmatrix}^{-1}$.
I'll let you simplify that nasty equation. Trust me the end answer is right though I checked. Also, $(\frac{1-\sqrt{5}}{2})^n$ is being raised to the power of $n$. I don't know why but it looks like I am multiplying it here for some weird reason.