I am working through some exercises in the dover book "Elementary Point Set Topology"
I am given the following axioms for a "system of neighborhoods" at x.
Let $X$ be a set and for each $x\in X$ define $\mathcal{U}_x=\{U(x)\}$ as a family of subsets of $X$ associated with $x$ such that
- $x\in U(X)$ for each $U(x)\in \mathcal{U}_x$
- If $U(x)\subset V$ for some $U(x)$, then $V\in \mathcal{U}_x$.
- If $U,V\in\mathcal{U}_x$, then $U\cap V\in \mathcal{U}_x$.
- If $U\in\mathcal{U}_x$, then there exists $V\in\mathcal{U}_x$ such that if $y\in V$, then $U\in\mathcal{U}_y$.
I am having a hard time interpreting the meaning of the fourth axiom. Please critique the following proof from an excercise in the book.
Let $\mathbb{R}$ be the real line and define $(a,b)=\{x|a<x<b\}$ and define $\mathcal{U}_x=\{U|x\in(a,b) \subseteq U \ \text{for some}\ a,b\in\mathbb{R},a<b\}$,
then $\mathcal{U}_x$ is a neighboorhood system at $x$.
Proof.
- $x\in U(x)$ for each $U(x)\in\mathcal{U}_x$ by definition.
- Suppose that $U(x)\subset V$ for some $U(x)\in\mathcal{U}_x$. Then $x\in (a,b)\subset U\subset V$ for some $a,b\in\mathbb{R}$. Hence, $V\in \mathcal{U}_x$.
- Suppose that $U,V\in\mathcal{U}_x$. Then $x\in(a_1,b_1)\subset U$ and $x\in(a_2,b_2)\subset V$ for some $a_1,b_1,a_2,b_2\in\mathbb{R}$. Let $(a,b)=(min\{a_1,a_2\},min\{b_1,b_2\})$. Then $x\in(a,b)\subset U\cap V$. (Here I am not sure if Im correctly interpereting the defininition of $\mathcal{U}_x$ for the usual topology of $\mathbb{R}$.)
- Suppose that $U(x)\in\mathcal{U}_x$. Choose $V=(a,b)$. Then $V\in \mathcal{U}_x$ since $x\in(a,b)\subset V$. Let $y\in V$. Then $y\in(a,b)\subset V$. But $(a,b)\subset U$ hence $y\in(a,b)\subset U$. Therefore, $U\in \mathcal{U}_y$.