If we can differentiate under the integration sign,
$$\frac{\partial I}{\partial a}=-i\int x\,e^{-iax-bx^2/2}dx.$$ (Notice the $/2$ for convenience.)
Then we can write
$$-iaI+\frac bi\frac{\partial I}{\partial a}=\int(-ia-bx)e^{-iax-bx^2/2}dx=\left.e^{-iax-bx^2/2}dx\right|_{-\infty}^\infty=0.$$
Hence the differential equation
$$\frac{\partial I}{\partial a}+\frac abI=0$$
that is separable and solved by
$$I=Ce^{-a^2/2b}.$$
The integration constant can be determined by setting $a=0$,
$$C=\int_{-\infty}^\infty e^{-bx^2/2}dx=\frac1{\sqrt b}\int_{-\infty}^\infty e^{-x^2/2}dx.$$