If $x$ is a real number that satisfies $x^{3}-\frac{1}{x^{3}}=76$, determine the value of $x-\frac{1}{x}$.
How can I solve this problem?
If $x$ is a real number that satisfies $x^{3}-\frac{1}{x^{3}}=76$, determine the value of $x-\frac{1}{x}$.
How can I solve this problem?
Hint: Expand $\left(x-\dfrac{1}{x}\right)^3$.
Let $u=x-\frac {1}{x} $
$$ u^3 = 76-3u$$
$$(u-4)(u^2+4u+19)=0$$
$$u=4$$
$$x- \frac {1}{x} =4$$
$a^3-b^3=(a-b)(a^2+ab+b^2)$ and note that $(x-\frac{1}{x})^2 =x^2+\frac{1}{x^2}-2$ then if we set $(x-\frac{1}{x})=t$ we have $t(t^2+3)=76$ now find $t$.