1

I havea chance constraint of the form $$ \mathbb{P}[a^\text{T}x\leqslant b]\geqslant\alpha$$ where $b\in\mathbb{R}$ is fixed, $a\in\mathbb{R}^n$ is a vector whose entries are Independent and identically distributed , and normally distributed with mean $\overline{a}$ and variance $\Sigma$

(that is, $a\sim\mathcal{N}(\overline{a},\Sigma)$), and $\alpha>1/2$ . It is well known that this constraint is equivalent to $$ F^{-1}(\alpha)\|\Sigma^{1/2}x\|_2\leqslant-\overline{a}^\text{T}x+b $$

why if $\alpha>1/2$ , then $\ \ F^{-1}(\alpha)\|\Sigma^{1/2}x\|_2$ is a convex?

0 Answers0