By looking at the characteristic function of $(a,b,c,d)$, from independence we have $$\mathbb{E} e^{i(ua+vb+wc+zd)} = \mathbb{E}e^{iua} \mathbb{E}e^{ivb} \mathbb{E}e^{iwc}\mathbb{E}e^{izd} = \mathbb{E}e^{i(ua+vb)} \mathbb{E}e^{i(wc+zd)}$$ this implies $$\mathbb{E} e^{i(u(a+b)+v(c+d))} = \mathbb{E}e^{iu(a+b)} \mathbb{E}e^{iv(c+d)}$$ which implies $a+b$ and $c+d$ are independent.
Is this correct, and is there a more direct argument?