It is easily understood in terms of double counting: if $\operatorname{ord}_p m$ denotes the exponent of the factor $p$ in $m$ and
$$ \mathbf{1}_{\{\cdots\}} = \begin{cases}
1, & \text{if $\cdots$ is true} \\
0, & \text{if $\cdots$ is false}
\end{cases} $$
denotes the indicator function for the statement $\cdots$, then
$$ \operatorname{ord}_p (n!)
= \sum_{k=1}^{n} \operatorname{ord}_p k
= \sum_{k=1}^{n} \sum_{l=1}^{\infty} \mathbf{1}_{\{p^l \mid k\}}
= \sum_{l=1}^{\infty} \sum_{k=1}^{n} \mathbf{1}_{\{p^l \mid k\}}
= \sum_{l=1}^{\infty} \bigg\lfloor \frac{n}{p^l} \bigg\rfloor. \tag{1}$$
The following figure demonstrates the case $n = 65$ with $p=2$.
$\hspace{4em}$
Here, the presence of a black bead at $(k, l)$ means that $p^l$ divides $k$. So
The number of beads at $k$ represents the highest power of $p$ that divides $k$, hence is $\operatorname{ord}_p k$.
The number of beads at height $l$ represents the total number of integers $\leq n$ which are divisible by $p^l$, i.e., the number of multiples of $p^l$ in $\{1, \cdots, n\}$. This is exactly $\lfloor n/p^l \rfloor$.
Then the LHS of $\text{(1)}$ counts the total number of beans from left to right, while the RHS of $\text{(1)}$ counts the total number of beans from bottom to top.