If $[0\le x\le1]$ is the pdf for $x$, then the cdf for $x$ is $x\,[0\le x\le1]$. Thus, the cdf for $y=\log(x)$ is $e^y\,[y\le0]$, and therefore the pdf for $y$ is $e^y\,[y\le0]$. The pdf for the sum of $n$ values of $y$ is the $n$-fold convolution of the pdf $e^y\,[y\le0]$ with itself. The Fourier Transform of this $n$-fold convolution is the $n^\text{th}$ power of the Fourier Transform of the pdf $e^y\,[y\le0]$, which is
$$
\int_{-\infty}^0 e^{-2\pi iyt}e^y\,\mathrm{d}y=\frac1{1-2\pi it}\tag1
$$
Thus, the pdf for the sum of $n$ values of $y$ is
$$
\begin{align}
\sigma_n(y)
&=\int_{-\infty}^\infty\frac{e^{2\pi iyt}}{(1-2\pi it)^n}\,\mathrm{d}t\tag{2a}\\
&=\frac{e^y}{2\pi i}\int_{1-i\infty}^{1+i\infty}\frac{e^{-yz}}{z^n}\,\mathrm{d}z\tag{2b}\\
&=e^y\frac{(-y)^{n-1}}{(n-1)!}\,[y\le0]\tag{2c}
\end{align}
$$
Explanation:
$\text{(2a)}$: take the inverse Fourier Transform
$\text{(2b)}$: substitute $t=\frac{1-z}{2\pi i}$
$\text{(2c)}$: if $y\gt0$, close the contour on the right half-plane, missing the singularity at $z=0$
$\phantom{\text{(2c):}}$ if $y\le0$, close the contour on the left half-plane, enclosing the singularity at $z=0$
The cdf for the sum of $n$ values of $y$ is the integral of $(2)$
$$
\Sigma_n(y)=e^y\sum_{k=0}^{n-1}\frac{(-y)^k}{k!}\,[y\le0]\tag3
$$
The cdf for the product of $n$ values of $x=e^y$ is therefore
$$
\Pi_n(x)=x\sum_{k=0}^{n-1}\frac{(-\log(x))^k}{k!}\,[0\le x\le1]\tag4
$$
The pdf for the product of $n$ values of $x$ is the derivative of $(4)$
$$
\bbox[5px,border:2px solid #C0A000]{\pi_n(x)=\frac{(-\log(x))^{n-1}}{(n-1)!}\,[0\le x\le1]}\tag5
$$
The pdf of $X_n$ is given by $(5)$.