Suppose X is a random variable. Is there a way to find $\min\{E|X-c|, c \in \mathbb{R}\}$?
What have I attempted to do so far:$\DeclareMathOperator{\Pr}{Pr}$ $$\Pr(|X - c| \leq t) = \begin{cases} 0 & \text{if } \;t \leq 0\newline\Pr(X \leq t + c) - \Pr(X \leq c - t)& \text{if } t > 0 \end{cases}$$ That results in the probability density function of $|X - c|$ being $$P_{|X - c|}(t) = \begin{cases} 0 & \text{if } t \leq 0,\cr P_{X}(t + c) + P_{X}(c - t)& \text{if } t > 0,\end{cases}$$ where $P_X$ is the probability density function of $X$. That means, that $$E|X-c| = \int_0^\infty t(P(t + c) + P(c - t))\,dt.$$ However this gives me nothing, as finding $\min\{\int_0^\infty t(P_X(t + c) + P_X(c - t))\,dt,\; c \in \mathbb{R}\}$ does not seem to be any easier.
Any help will be appreciated.