I personally find it easier to go forward rather than backwards.
We want $|x - 2| < \delta \implies |\frac 1x - \frac 12| < \epsilon$
$|x - 2| < \delta \implies$
$-\delta < x - 2 < \delta$
$2 - \delta < x < 2 + \delta$ (assuming $x > 0$ and $\delta < 2$)
$\frac 1{2 + \delta} < \frac 1x < \frac 1{2-\delta}$
$\frac 12 - \frac {\delta}{2 + \delta} < \frac 1x < \frac 12 + \frac{\delta}{2-\delta}$.
So now we need
$\frac 12 - \epsilon \le \frac 12 - \frac {\delta}{4 + 2\delta} < \frac 1x < \frac 12 + \frac{\delta}{4-2\delta}\le \frac 12 + \epsilon$.
What $\delta$ will make that work?
Well we need $\epsilon \ge \frac {\delta}{4 + \delta}$ and $\epsilon \ge \frac{\delta}{4-2\delta}$ and so we need $\epsilon \ge \frac{\delta}{4-2\delta} > \frac {\delta}{4 + 2\delta}$
so $\epsilon = \frac{\delta}{4-2\delta}$ will do.
So $4\epsilon - 2\epsilon\delta = \delta$
$4\epsilon = \delta(1 + 2\epsilon)$
$\delta = \frac {4\epsilon}{1 + 2\epsilon}$ is the $\delta$ we need.