We have that
$$\int_0^1x^{2n}\ln(x)\,dx=\left[x^{2n+1}
\left(\frac{\ln(x)}{(2n+1)}-\frac{1}{(2n+1)^2}\right)
\right]_0^1=-\frac{1}{(2n+1)^2}$$
and, for $x\in[0,1]$,
$$\sum_{n=0}^{\infty}\binom{2n}{n}\frac{x^{2n}}{4^n(2n+1)}=\frac{\arcsin(x)}{x}.$$
Hence
\begin{align*}
\sum_{n=0}^{\infty}\binom{2n}{n}\frac{1}{4^n(2n+1)^3}&=
-\int_0^1\frac{\arcsin(x)\ln(x)}{x}\,dx\\&=
-\left[\arcsin(x)\,\frac{\ln^2(x)}{2}\right]_0^1
+\frac{1}{2}\int_0^1\frac{\ln^2(x)}{\sqrt{1-x^2}}\,dx\\
&=\frac{1}{2}\int_0^1\frac{\ln^2(x)}{\sqrt{1-x^2}}\,dx
=\frac{1}{2}\int_0^{\pi/2}\ln^2(\sin(t))\,dt=\frac{\pi^3}{48}+\frac{\pi\ln^2(2)}{4}
\end{align*}
where the last integral is known: Integrate square of the log-sine integral: $\int_0^{\frac{\pi}{2}}\ln^{2}(\sin(x))dx$ .