For the integral $L := \iint_{\mathbb R^2} \delta(f(x,y)) \, dx \, dy$
to measure the length of the curve $f(x,y) = 0$ we must have $\|\nabla f(x,y)\| = 1$ where $f(x,y) = 0.$ This is related to the scaling property.
So in the case of the circle with center in $(0,0)$ and radius $R,$ we could take $f(x,y) = \frac{1}{2R} (x^2+y^2-R^2).$ This would then give
$$
L = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \delta\left( \frac{1}{2R}(x^2 + y^2 - R^2) \right) \, dx \, dy \\
= \{ \text{ polar coordinates } \} \\
= \int_0^{2\pi} \left( \int_0^\infty \delta\left( \frac{1}{2R}(r^2 - R^2) \right) \, r \, dr \right) \, d\theta \\
= \left\{ u = \frac{1}{2R}r^2 \right\} \\
= \int_0^{2\pi} \left( \int_0^\infty \delta\left( u-R/2 \right) \, R \, du \right) \, d\theta \\
= \int_0^{2\pi} R \, d\theta
= 2\pi \, R.
$$
Well the content of this question might help: https://math.stackexchange.com/questions/619083/dirac-delta-function-of-non-linear-multivariable-arguments
– Benedict W. J. Irwin May 31 '18 at 21:59