$$I_k=\int_{-1}^1 x^{2k}\, \left[\text{erf}(x)\right]^k \,dx$$ is $0$ if $k$ is odd. So, we need to focus on
$$I_{2k}=\int_{-1}^1 x^{4k}\, \left[\text{erf}(x)\right]^{2k} \,dx$$ which could be approximated, as I wrote in an answer to your previous question, using
$$\left[\text{erf}(x)\right]^2\approx 1-e^{-a x^2}\qquad \text{with}\qquad a=(1+\pi )^{2/3} \log ^2(2)$$ making
$$I_{2k}=\int_{-1}^1 x^{4k}\, \left(1-e^{-a x^2}\right)^{k} \,dx$$ to be developed using the binomial expansion.
So, in practice, we face the problem of $$J_{n,k}=\int_{-1}^1 x^{4k}\,e^{-n a x^2}\,dx$$ The antiderivative
$$\int x^{4k}\,e^{-n a x^2}\,dx=-\frac{1}{2} x^{4 k+1} E_{\frac{1}{2}-2 k}\left(a n x^2\right)$$ where appears the exponential integral function. Using the bounds, this reduces to
$$J_{n,k}=-E_{\frac{1}{2}-2 k}(a n)$$ and leads to "reasonable" approximation as shown in the table below
$$\left(
\begin{array}{ccc}
k & \text{approximation} & \text{exact} \\
1 & 0.22870436048 & 0.22959937502 \\
2 & 0.08960938943 & 0.08997882179 \\
3 & 0.04400808083 & 0.04418398568 \\
4 & 0.02389675159 & 0.02398719298 \\
5 & 0.01374034121 & 0.01378897319 \\
6 & 0.00819869354 & 0.00822557475 \\
7 & 0.00502074798 & 0.00503586007 \\
8 & 0.00313428854 & 0.00314286515 \\
9 & 0.00198581489 & 0.00199069974 \\
10& 0.00127304507 & 0.00127582211
\end{array}
\right)$$
Edit
Another approximation could be obtained using the simplest Padé approximant of the error function
$$\text{erf}(x)=\frac{2 x}{\sqrt{\pi } \left(1+\frac{x^2}{3}\right)}$$ which would lead to
$$I_{2k}=\int_{-1}^1 x^{4k}\, \left[\text{erf}(x)\right]^{2k} \,dx$$ $$I_{2k} \approx\frac 2{6k+1}\,\left(\frac{4}{\pi }\right)^k\,\, _2F_1\left(2 k,\frac{6k+1}{2}; \frac{6k+3}{2};-\frac{1}{3}\right)$$ slightly less accurate than the previous one.
Continuing with Padé approximant
$$\text{erf}(x)=\frac{\frac{2 x}{\sqrt{\pi }}-\frac{x^3}{15 \sqrt{\pi }}}{1+\frac{3 x^2}{10}}$$ we should get
$$I_{2k}=\int_{-1}^1 x^{4k}\, \left[\text{erf}(x)\right]^{2k} \,dx$$ $$I_{2k}\approx\frac 2{6k+1}\,\left(\frac{4}{\pi }\right)^k\,\, F_1\left(\frac{6k+1}{2};-2 k,2 k;
\frac{6k+3}{2};\frac{1}{30},-\frac{3}{10}\right)$$ where appears the the Appell hypergeometric function of two variables.