Hint:
Denote $D_n$ this determinant for an $n\times n$ matrix. Subtracting the second column from the first end expanding by the first column, we obtain that
$$D_n=\begin{vmatrix}x+1&-1&-1&\dots&-1\\
-(x+1)&\phantom{-}x&-1&\dots&-1\\ 0&-1&\phantom{-}x&\dots&-1\\[-1ex]
\vdots&\phantom{-}\vdots&\phantom{-}\vdots&\dots&\phantom{-}\vdots\\0&-1&-1&\dots&\phantom{-}x\end{vmatrix}
=(x+1)D_{n-1}+(x+1)\begin{vmatrix}-1&-1&\dots&-1\\
-1&\phantom{-}x&\dots&-1\\[-1ex]
\phantom{-}\vdots&\phantom{-}\vdots&\dots&\phantom{-}\vdots\\-1&-1&\dots&\phantom{-}x\end{vmatrix}.$$
Now in the last determinant, the first row is the sum ot two rows
$$\begin{pmatrix}x &-1&\dots&-1\end{pmatrix}+\begin{pmatrix}-x-1&0&\dots&0\end{pmatrix},$$
so that, by multilinearity
\begin{align}
&\begin{vmatrix}-1&-1&\dots&-1\\
-1&\phantom{-}x&\dots&-1\\[-1ex]
\phantom{-}\vdots&\phantom{-}\vdots&\dots&\phantom{-}\vdots\\-1&-1&\dots&\phantom{-}x\end{vmatrix}=\begin{vmatrix}x&-1&\dots&-1\\
-1&\phantom{-}x&\dots&-1\\[-1ex]
\phantom{-}\vdots&\phantom{-}\vdots&\dots&\phantom{-}\vdots\\-1&-1&\dots&\phantom{-}x\end{vmatrix}-\begin{vmatrix}x+1&0&\dots&0\\
-1&\phantom{-}x&\dots&-1\\[-1ex]
\phantom{-}\vdots&\phantom{-}\vdots&\dots&\phantom{-}\vdots\\-1&-1&\dots&\phantom{-}x\end{vmatrix}\\[1ex]
&= D_{n-1}-(x+1)\begin{vmatrix}
\phantom{-}x&\dots&-1\\[-1ex]
\phantom{-}\vdots&\dots&\phantom{-}\vdots\\-1&\dots&\phantom{-}x\end{vmatrix}
=D_{n-1}-(x+1)D_{n-2},
\end{align}
whence the recurrence relation:
$$D_n=2(x+1)D_{n-1}-(x+1)^2D_{n-2}.$$