2

I was wondering if a matrix $A$ can be PD, but still have complex eigenvalues (with nonzero imaginary part).

I know for example that any symmetric/Hermitian matrix has real eigenvalues, but for example $A=\begin{pmatrix} 1 & 1\\0 &1\end{pmatrix}$ is neither, yet is positive definite.

From linear algebra I also know that the following statements are equaivalent:

1) $A$ is PD if $z^TAz>0 \;\forall z \neq 0$.

2) $A$ is PD, then all eigenvalues $\lambda_i>0$.

3) $A$ is PD, then $z^TAz>cz^Tz$ for some $c>0$.

I'm mostly concerned abou the second statement, so if it would possible for a PD matrix to have complex eigenvalues, how does this relate to $\lambda>0$? Are we only considering the real part?

At this point I am wondering if these statements are even true for the complex case, since in classes you usually see examples like $z^TAz = c_1z_1^2+c_2z_2^2$, (considering some $A\in\mathbb{R}^{2\times 2}$) where $c_1$ and $c_2$ are some positive constants. This however works only for real $z$, since if for example $z = [i\quad 0]^T$, this argument already breaks down.

Looking at for example Wikipedia seems not very helpful, since this only considers Hermitian/symmetric matrices, which I am specifically not interested in.

Summarising

I am interested in the possibilities of having PD matrices with complex eigenvalues. I am not particularly interested in a simple yes or no (even though this would be a great starting point), but more in what the consequences of such a situation are. How does this relate to the above statements? Do I oversee some principles ideas which even contradict this being possible?

  • @Moo, the answer to this question doesn't seem to answer mine, since it only addresses a specific case and it only gives an explanation for what is observed; it nowhere states whether it is possible or not. – User123456789 May 30 '18 at 17:16
  • Only the symmetric (Hermitian) part of the matrix contributes to the related quadratic form, so what really matters are the eigenvalues of that. – amd May 30 '18 at 19:27
  • Consider a $2\times2$ rotation matrix with rotation angle $|\alpha|<\frac{\pi}{2}$ – ccorn May 30 '18 at 20:17

0 Answers0