Let $f(x)=x^{5}-1 \in \mathbb{Q[x]}$. We know that $G=\operatorname{Gal}(\mathbb{Q(w)/\mathbb{Q)}}\simeq U(\mathbb{Z}_5)$ where $U(\mathbb{Z}_5)=\{\bar{1},\bar{2},\bar{3},\bar{4}\}$ is cyclic group. So |$\operatorname{Gal}(\mathbb{Q(w)/\mathbb{Q)}}$|$=4$ also and $U(\mathbb{Z}_5)=\langle\bar{2}\rangle$. So we get that $G=\langle\sigma_2\rangle$ where $\sigma_2: w \mapsto w^2$ and also $\operatorname{ord}(\sigma_2)=4$ because $G$ is cyclic.
The question is to prove that $E^{\langle\sigma^2\rangle}=\mathbb{Q}(w+w^{-1})$ where $w=e^{\frac{2πi}{5}}$
Also find $\operatorname{Irr}_\mathbb{Q}(\cos(\frac{2π}{5}))(x)$.
Thank you for your time!