Find $x^5+\dfrac1{x^5}$ in its simplest form given that $x^2+\dfrac1{x^2}=a$ for $a,x>0$.
Attempt:
We write $$x^2+\frac1{x^2}=a\implies x^4-ax^2+1=0\implies x^5=ax^3-x$$ and $$\frac1{x^2}=a-x^2\implies \frac1{x^4}=a^2-2ax^2+x^4\implies \frac1{x^5}=\frac{a^2}x-2ax+x^3$$ so $$\begin{align}x^5+\frac1{x^5}&=(1+a)x^3-(1+2a)x+a^2\cdot\frac1x\\&=(1+a)x^3-(1+2a)x+a^2(ax-x^3)\\&=(1+a-a^2)x^3-(1+2a-a^3)x\\\implies x^5+\frac1{x^5}&=(a^2-a-1)x(a+1-x^2)\end{align}$$ But is this in its simplest form?