Problem
Evaluate $$\lim\limits_{x \to 0} \frac{x-\sin\sin\cdots\sin x}{x^3},$$where $\sin\sin\cdots\sin x$ denotes n-fold composite sine function.
Solution
Consider applying Taylor's Formula with 3-order at $x=0$. We may obtain $$f_n(x)=\sin\sin\cdots\sin x=x-\frac{n}{6}x^3+\mathcal{O}(x^3).\tag{*}$$ To prove this, we can apply the mathematical induction. Let $n=1,$ then $$f(x)=\sin x=x-\frac{1}{6}x^3+\mathcal{O}(x^3),$$ It's true and shows that $(*)$ holds for $n=1$. Assume that $(*)$ holds for $n=k$. Then $$\begin{align*}f_{k+1}(x)&=\sin(f_k(x))\\&=x-\frac{k}{6}x^3+\mathcal{O}(x^3)-\frac{1}{6}\left(x-\frac{k}{6}x^3+\mathcal{O}(x^3)\right)^3+\mathcal{O}(x^3)\\&=x-\frac{k+1}{6}x^3+\mathcal{O}(x^3)\end{align*}.$$ This shows that $(*)$ holds for $n=k+1$. As a result, $(*)$ holds for all $n=1,2,\cdots.$ Now,let's go back to deal with the problem. $$\lim\limits_{x \to 0} \frac{x-\sin\sin\cdots\sin x}{x^3}=\lim\limits_{x \to 0} \dfrac{x-\left(x-\dfrac{n}{6}x^3+\mathcal{O}(x^3)\right)}{x^3}=\frac{n}{6}.$$
Please correct me if I'm wrong. Hope to see other solutions. Thanks.
$$\frac{d}{dx}\sin(\sin(x))=\cos(x) \cos(\sin(x))$$ $$\frac{d}{dx}\sin(\sin(\sin(x)))=\cos(x) \cos(\sin(x)) \cos(\sin(\sin(x))),$$ and so on... Then, as we know that $$\lim_{x\to0}\frac{1-\cos{x}}{x^2}=\frac{1}{2}$$ maybe we can deduce your result. I don't know if it's works correctly, it's only an idea
– jnaf May 29 '18 at 04:26