Starting from the series that you already got
$$
\eqalign{
& I(a) = \int_0^\infty {{{dx} \over {e^{\,x} + ax}}} = \int_0^\infty {{{e^{\, - x} dx} \over {\left( {1 + axe^{\, - x} } \right)}}} = \cr
& = \int_0^\infty {\sum\limits_{0\, \le \,k} {\left( { - 1} \right)^{\,k} \left( {a^{\,k} x^{\,k} e^{\, - \,\left( {k + 1} \right)\,x} } \right)} \;dx}
= \sum\limits_{0\, \le \,k} {\left( { - 1} \right)^{\,k} {{k!} \over {\left( {k + 1} \right)^{k + 1} }}a^{\,k} } \cr}
$$
and which converges for
$$
\left| a \right|x/e^{\,x} < \left| a \right|1/e < 1\quad \Rightarrow \quad \left| a \right| < e
$$
From this related post we get
$$
\sum\limits_{1\, \le \,\,n} {{1 \over {n^{\,n} }}x^{\,n} }
= x\sum\limits_{0\, \le \,\,n} {{1 \over {\left( {n + 1} \right)^{\,n + 1} }}x^{\,n} }
= x\int_{\,0}^{\,1} {t^{\, - \,x\,t} dt}
$$
and since
$$
A(z) = \sum\limits_{0\, \le \,n} {a_n \,z^n } \quad \Leftrightarrow \quad \int_{\;t\, = \,0}^\infty {e^{\, - \,t} A(z\,t)\,d\,t}
= \sum\limits_{0\, \le \,n} {n!a_n z^{\,n} }
$$
we get another integral representation
$$ \bbox[lightyellow] {
\eqalign{
& I( - x) = \sum\limits_{0\, \le \,\,n} {{{n!} \over {\left( {n + 1} \right)^{\,n + 1} }}x^{\,n} }
= \int_0^\infty {{{e^{\, - u} du} \over {1 - x\,u\,e^{\, - u} }}} = \cr
& = \int_{\,u\, = \,0}^{\,\infty } {e^{\, - \,u} \int_{\,t\, = \,0}^{\,\,1} {t^{\, - \,x\,u\,t} dt\,} du}
= \int_{\,t\, = \,0}^{\,1} {\int_{\,u\, = \,0}^{\,\infty } {e^{ - \,u\left( {1 + x\,t\ln t} \right)}\, dt\,} du} = \cr
& = \int_{\,t\, = \,0}^{\,1} {{{dt} \over {\left( {1 + x\,t\ln t} \right)}}} \cr}
}$$
Now the second line tells us that
$$
I( - 1/s) = \int_{\,u\, = \,0}^{\,\infty } {e^{\, - \,u} \int_{\,t\, = \,0}^{\,\,1} {t^{\, - \,\,\left( {u/s} \right)\,t} dt\,} du}
$$
i.e.
$$ \bbox[lightyellow] {
\eqalign{
& {1 \over s}I( - 1/s)
= \int_{\,\alpha \, = \,0}^{\,\infty } {e^{\, - \,s\,\alpha } \left( {\int_{\,t\, = \,0}^{\,\,1} {t^{\, - \,\,\alpha \,t} dt\,} } \right)d\alpha } = \cr
& = \int_0^\infty {{{e^{\, - u} } \over {s - \,u\,e^{\, - u} }}du} = \int_{\,t\, = \,0}^{\,1} {{{dt} \over {\left( {s + \,t\ln t} \right)}}} \cr}
}$$
so that our integral is tied to the Laplace transform of the interesting function
$\int_{0}^1 {t^{-xt}}dt=\sum_{n=1}^\infty \frac{x^{n-1}}{n^n} = $ Sphd$(-x;1)$
cited by JJacquelin in his answer to the already cited post.