Exercise :
Find a maximum likelihood estimator of $\theta$ for : $f(x) = \theta x^{-2}, \; \; 0< \theta \leq x < \infty$.
Attempt :
$$L(x;\theta) = \prod_{i=1}^n \theta x^{-2} \mathbb{I}_{[\theta, + \infty)}(x_i) = \theta^n \mathbb{I}_{[\theta, + \infty)}(\min x_i)$$
How should one proceed from now on to find a MLE ?
I think it should be such as :
$$\begin{cases} \theta \; \text{sufficiently large} \\ \min x_i \geq \theta \end{cases} \implies \hat{\theta} = \min x_i$$
Is my approach correct ?