Here is my attempt. Does this make sense to you experts?
If we vectorize such that
\begin{align}
AB - BA &= \lambda B \\
&\Downarrow \\
\mbox{vec}\left(AB - BA \right) &= \mbox{vec}(\lambda B) \\
\mbox{vec}\left(ABI - IBA \right) &= \mbox{vec}(\lambda B) \\
\left(\left(I \otimes A\right) - \left(A^{\rm T} \otimes I\right)\right)\mbox{vec}(B) &= \lambda \mbox{vec}(B) \\
\end{align}
So, according to Theorem 13.16, the eigenvalues of the Kronecker sum $\left(\left(I \otimes A\right) - \left(A^{\rm T} \otimes I\right)\right)$ would be $\lambda_i - \lambda_j$. Hence, the solution should be non-trivial if and only if $\lambda = \lambda_i - \lambda_j$.