First in the case of unitary matrix $U^*=U^{-1}$. and $\det U=1$.
See more here: https://en.wikipedia.org/wiki/Unitary_matrix
However, notice $A=\begin{pmatrix} 0.1&0.1\\ 0.1&0.1\\ \end{pmatrix}$, $B=\begin{pmatrix} 10&10\\ 10&10\\ \end{pmatrix}$
Thus $\lim_{n\rightarrow\infty}A^n=\begin{pmatrix} 0&0\\ 0&0\\ \end{pmatrix}$, $\lim_{n\rightarrow\infty}B^n=\begin{pmatrix} \infty&\infty\\ \infty&\infty\\ \end{pmatrix}$, where $\lim_{n\rightarrow\infty}U^n$ was still a unitary matrix.
Obviously, $A$ converge to $0$ and $B$ blow up. In the sense that $|B|>|U|$ and $|U|>|A|$.
My question was that, is there any way to measure the magnitude of a matrix? (Notice $\det A=\det B=0$)
$B=\begin{pmatrix} 0.99&0\ 0&0.99 \end{pmatrix}$. Then if we set the norm to be $(a_1^2+a_2^2+a_3^2+a_4^2)^{1/2}$ then $||B||>||A||$ yet $A$ still blow up and $B$ converge to $0$.
– May 26 '18 at 00:04