Let $\mathcal{R}$ be an open subset of $\mathbb{R}^M$ with $M\geq 2$.
Consider the function $$a\equiv(a_1,...,a_M) \in \mathbb{R}^M\mapsto G(a)\equiv \int_{\{r\equiv (r_1,..., r_M)\in \mathcal{R}\}} \ \Big[\max_{i\in \{1,...,M\}} (a_i+ r_i)\Big] f(r) dr $$ where $f: \mathbb{R}^M\rightarrow \mathbb{R}$ is
strictly positive on $\mathcal{R}$ and zero on $\mathbb{R}\setminus \mathcal{R}$
$\int_{\{r\equiv (r_1,..., r_M)\in \mathcal{R}\}} f(r) dr =1$
Is $G$ convex? Is it strictly convex? Could you help me to show it? I know that the function within the square brackets is convex but not strictly convex (as kindly explained here)