Let $X \in \mathbb{R}^{a \times b}$ and
$$\|X\|_2 = \sigma_{\max}(X) = \sqrt{\lambda_{\max} \left( X^T X \right)}$$
How can I compute $\nabla_X \|AX\|_2$, where $A \in \mathbb{R}^{c \times a}$ is some known matrix?
Let $X \in \mathbb{R}^{a \times b}$ and
$$\|X\|_2 = \sigma_{\max}(X) = \sqrt{\lambda_{\max} \left( X^T X \right)}$$
How can I compute $\nabla_X \|AX\|_2$, where $A \in \mathbb{R}^{c \times a}$ is some known matrix?
Consider a matrix and its SVD $$Y = \sum_{k=1}^r\sigma_ku_kv_k$$ and let $\,\phi=\|Y\|=\sigma_1\,$ be the spectral norm $($assuming that the singular values are ordered such that $\sigma_1>\sigma_2>\sigma_3>\ldots>\sigma_r>0\,)$
The gradient of the norm is $$\frac{\partial\phi}{\partial Y} = u_1v_1^T$$
Write the differential in terms of this gradient and perform a change of variables $Y=AX$ $$\eqalign{ d\phi &= u_1v_1^T:dY \cr &= u_1v_1^T:A\,dX \cr &= A^Tu_1v_1^T:dX \cr \frac{\partial\phi}{\partial X} &= A^Tu_1v_1^T \cr }$$ to obtain the desired gradient.
A colon is used to denote the trace/Frobenius product, i.e. $A:B={\rm tr}(A^TB),\,$ in some of the steps above.
If the first few singular values are identical, $($e.g. $\sigma_1=\sigma_2=\sigma_3)$, then the result changes slightly $$\eqalign{ \frac{\partial\phi}{\partial X} &= \sum_{k=1}^3A^Tu_kv_k^T \cr }$$