Exercise :
Calculate a Maximum Likelihood Estimator for the model $X_1,\dots, X_n \; \sim U(-\theta,\theta)$.
Solution :
The distribution function $f(x)$ for the given Uniform model is :
$$f(x) = \begin{cases} 1/2\theta, \; \; -\theta \leq x \leq \theta \\ 0 \quad \; \; , \quad\text{elsewhere} \end{cases}$$
Thus, we can calculate the likelihood function as :
$$L(\theta)=\bigg(\frac{1}{2\theta}\bigg)^n\prod_{i=1}^n\mathbb I_{[-\theta,\theta]}(x_i)= \bigg(\frac{1}{2\theta}\bigg)^n\prod_{i=1}^n \mathbb I_{[0,\theta]}(|x_i|) $$
$$=$$
$$\bigg(\frac{1}{2\theta}\bigg)^n\prod_{i=1}^n \mathbb I_{[-\infty,\theta]}(|x_i|)\prod_{i=1}^n \mathbb I_{[0, +\infty]}(|x_i|)$$
$$=$$
$$\boxed{\bigg(\frac{1}{2\theta}\bigg)^n\prod_{i=1}^n \mathbb I_{[-\infty,\theta]}(\max|x_i|)}$$
Question : How does one derive the final expression in the box from the previous one ? I can't seem to comprehend how this is equal to the step before.
Other than that, to find the maximum likelihood estimator you need a $\theta$ sufficiently small but also $\max |x_i| \leq \theta$ which means that the MLE is : $\hat{\theta} = \max |x_i|$.