1

Possible Duplicate:
How can I evaluate $\sum_{n=0}^\infty (n+1)x^n$

How do I compute the point of convergence of a series?

e.g. for example, How do I prove that,

$$\sum_{n=0}^{\infty}\frac{n}{2^{n+1}}=1$$

Can I do:

Point of convergence= $\limsup_{n\rightarrow\infty}\sum_{k=0}^{n}\frac{n}{2^{n+1}}=\sup\{\frac{1}{4},\frac{1}{2},\frac{11}{16},\frac{13}{16},\frac{57}{64},\frac{15}{16},\dots\}=1$

007resu
  • 1,991

2 Answers2

5

$$\sum_{n=0}^\infty r^n=\frac1{1-r}$$ for $|r|<1$ and $r\ne1$

Applying derivative wrt $r,$ $$\sum_{n=0}^\infty nr^{n-1}=\frac1{(1-r)^2}$$

Put $r=\frac12,$ $$\sum_{n=0}^\infty \frac{n}{2^{n-1}}=\frac1{(1-\frac12)^2}=4$$

Now, divide both sides by $2^2$


Alternatively,

let $$S=1+2r+3r^2+4r^3+\cdots+ n\cdot r^{n-1}$$ with $|r|<1$ and $r\ne1$

So, $$r\cdot S=r+2r^2+3r^3+4r^4+\cdots+(n-1)\cdot r^{n-1}+n\cdot r^n$$

On subtraction, $$(1-r)S=1+r+r^2+r^3+\cdots+r^{n-1}-n\cdot r^n=\frac{1-r^n}{1-r}-n\cdot r^n$$

If $n\to \infty, r\to 0$ as $|r|<1$ , so does $n\cdot r^n$(Prove)

So, $$(1-r)S=\frac1{1-r}$$

2

If we denote S=$\sum_{n=0}^{\infty}\displaystyle \frac{n}{2^{n+1}}$, then

$$S-\frac{S}{2}=\sum_{n=2}^{\infty}\frac{1}{2^k}\longrightarrow S=1$$

Q.E.D.

user 1591719
  • 44,216
  • 12
  • 105
  • 255