Possible Duplicate:
How can I evaluate $\sum_{n=0}^\infty (n+1)x^n$
How do I compute the point of convergence of a series?
e.g. for example, How do I prove that,
$$\sum_{n=0}^{\infty}\frac{n}{2^{n+1}}=1$$
Can I do:
Point of convergence= $\limsup_{n\rightarrow\infty}\sum_{k=0}^{n}\frac{n}{2^{n+1}}=\sup\{\frac{1}{4},\frac{1}{2},\frac{11}{16},\frac{13}{16},\frac{57}{64},\frac{15}{16},\dots\}=1$