Consider the transformation:
$T \begin{bmatrix} x \\ y \\ \end{bmatrix} $ $\mapsto$$\frac{\sqrt{2}}{2} \begin{bmatrix} x+y-1 \\ -x+y+1 \\ \end{bmatrix} $
Show that $T$ is an isometry, then write the matrix of the projectivity $\tau:\mathbb{P^2} \to \mathbb{P^2} $ where $\mathbb{P^2} = P(\mathbb{R^3})$. Write also $\tau^{-1}$.
To answer to the first question I think I have just to show that it has been obtained as composition of projectivities of the form: $z \mapsto az$ and $z \mapsto z+b$
For the second one, should I find a projective frame for the input and one other for the output? Such as:
$P_1 \begin{bmatrix} 1 \\ 0 \\0\\ \end{bmatrix} $, $P_2 \begin{bmatrix} 0 \\ 1 \\0\\ \end{bmatrix} $, $P_3 \begin{bmatrix} 0 \\ 0 \\1\\ \end{bmatrix} $, $P_4 \begin{bmatrix} 1 \\ 1 \\1\\ \end{bmatrix} $ and $Q_1 \begin{bmatrix} \frac{\sqrt{2}}{2} \\ 0 \\\frac{\sqrt{2}}{2}\\ \end{bmatrix} $, $Q_2 \begin{bmatrix} \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} \\0\\ \end{bmatrix} $, $Q_3 \begin{bmatrix} -\frac{\sqrt{2}}{2} \\ 0 \\\frac{\sqrt{2}}{2}\\ \end{bmatrix} $, $Q_4 \begin{bmatrix} \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} \\\sqrt{2}\\ \end{bmatrix} $
Where
$Q_1 \in x+y-1$;
$Q_2 \in x+y-1 \cap -x+y+1$
$Q_3 \in -x+y+1$
$Q_4 = Q_1+Q_2+Q_3$
So, the matrix which represents $\tau$ would be: \begin{bmatrix} \frac{\sqrt{2}}{2}&\frac{\sqrt{2}}{2}&-\frac{\sqrt{2}}{2} \\ 0&\frac{\sqrt{2}}{2}&0 \\ \frac{\sqrt{2}}{2}&0&\sqrt{2} \end{bmatrix}
Am I right? What about $\tau^{-1}$? Thank you everyone