Let $V\equiv (V_1,..., V_M)$ be a random vector with all components continuous random variables. Consider the function $G\colon \mathbb{R}^M \rightarrow \mathbb{R}$ with
$$ G(a)=\mathbb{E}(\max_{k\in \mathcal{M}} (V_k+a_k) )\equiv \int (\max_{k\in \mathcal{M}}( v_k+a_k))f(v)dv $$ for any $a\equiv (a_1,..., a_M)\in \mathbb{R}^M$ and $\mathcal{M}\equiv \{1,...,M\}$, where $\mathbb{E}$ denotes expectation, $v\equiv (v_1,..., v_M)$ is a realisation of $V$, $f$ is the pdf of $V$.
Could you help me to show that $G$ is strictly convex and lower semicontinuous?