5

How can one show that there exists an infinitely differentiable function $ f: \mathbb{R} \to \mathbb{R} $ such that $ {f^{(n)}}(0) = 0 $ but $ f^{(n)} \not\equiv 0 $ for all $ n \in \mathbb{N} $?

Haskell Curry
  • 19,524
hiv
  • 51

2 Answers2

6

The function $f(x)=e^{-1/x^2}$ is a canonical such example.

Ittay Weiss
  • 79,840
  • 7
  • 141
  • 236
  • Inductively, for any $n\in\mathbb N$ one can prove $f^{(n)}(x)=p(x)e^{-1/x^2}$ for some rational function $p(x)$. Now, taking the limit $x\to 0$ gives $f^{(n)}(0)=0$. – Kenta S Dec 30 '21 at 17:55
6

The function $f$ given by $$ f(x)= \begin{cases} \exp\left(-1/x\right),\quad&x>0,\\ 0,&x\leq 0 \end{cases} $$ has derivatives of all orders that satisfy $f^{(n)}(x)=0$ for $x\leq 0$ and $n\in\mathbb N$. See e.g. wikipedia and/or this question.

Stefan Hansen
  • 25,582
  • 7
  • 59
  • 91