Let $f\in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$. By Parseval's formula we know that $$ \left\Vert \widehat{f}\right\Vert _{L^{2}\left(\mathbb{R}^{n}\right)}=\left\Vert f\right\Vert _{L^{2}\left(\mathbb{R}^{n}\right)}, $$ where $\widehat{f}$ is the Fourier transform of $f$. Moreover, it is well-known that $\widehat{f}\in C\left(\mathbb{R}^{n}\right)$ for any $f\in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$. Thus $$ \intop_{\mathbb{S}^{n-1}}\left|\widehat{f}\left(x\right)\right|^{2}dx\;\;\text{ and }\intop_{\mathbb{S}^{n-1}}\left|f\left(x\right)\right|^{2}dx $$ make sense for any $f\in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$. Here $\mathbb{S}^{n-1}$ is the unit sphere, $\mathbb{S}^{n-1}:=\left\{ x\in\mathbb{R}^{n}:\left|x\right|=1\right\} $.
My question is: is it true that $$ \left\Vert \widehat{f}\right\Vert _{L^{2}\left(\mathbb{S}^{n-1}\right)}=\left\Vert f\right\Vert _{L^{2}\left(\mathbb{S}^{n-1}\right)} $$ for any $f\in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$?