Evaluate $$\lim_{n\to\infty}\frac {qn+1}{qn} \frac {qn+p+1}{qn+p} \dotsm \frac {qn+np+1}{qn+np}$$ where $p\in\mathbb{N}\setminus\{0,1\},q>0.$
Any hints on how to approach this problem in the first place? The answer should be: $\left(\frac {p+q}q\right)^{1/p}$
I have just tried something and got pretty close to the result anyway:
Let $\lim_{n\to\infty} \frac {qn + 1}{qn}\frac {qn+p+1}{qn+p}\dotsm\frac {qn+np+1}{qn+np}=L$ taking the $\ln$ on both sides we get:
$$\lim_{n\to\infty} \sum_{k=0}^n\ln\left(1+\frac1{qn+kp}\right).$$
Here (I'm not sure if I'm wrong here) but if we use the remarkable limit on each of these $\ln$. $\lim_{x\to0}\frac{ln(1+x)}{x}=1$.
$$\lim_{n\to\infty}\sum_{k=0}^n\frac1n\frac1{q+ \frac knp}\xrightarrow[{n\rightarrow\infty}]{}\int_0^1\frac 1{q+xp}dx=\frac 1p\ln\frac {p+q}{q}=\ln L.$$
$\implies \boxed{L=\sqrt[p]{\frac{p+q}q}}.$