Evaluate $$D=\begin{vmatrix} -2a &a+b &a+c \\ b+a& -2b &b+c \\ c+a&c+b & -2c \end{vmatrix}$$
My try:
Applying $R_1 \to R_1+R_2$ we get
$$D=\begin{vmatrix} b-a&a-b &a+b+2c \\ b+a& -2b &b+c \\ c+a&c+b & -2c \end{vmatrix}$$
Now apply $$C_1 \to C_1+C_2$$
$$D=\begin{vmatrix} 0&a-b &a+b+2c \\ a-b& -2b &b+c \\ 2c+a+b&c+b & -2c \end{vmatrix}$$
Now apply $C_2 \to C_2 +C_3$
$$D= \begin{vmatrix} 0&2a+2c &a+b+2c \\ a-b& c-b &b+c \\ 2c+a+b&b-c & -2c \end{vmatrix}$$
Now use $R_3 \to R_3+R_2$
$$D= \begin{vmatrix} 0&2a+2c &a+b+2c \\ a-b& c-b &b+c \\ 2c+2a&0 & b-c \end{vmatrix}$$
any way to proceed here using elementary operations?