This comes from the quadratic formula. See here for more details.
In your case, $$x^2 + 4Cx -2Cy = x^2 + 4Cx +(2C)^2 - (2C)^2-2Cy = (x+2C)^2 - (2C)^2 \left(1 + \dfrac{y}{2C} \right) = 0$$
Hence, we have that
$$(x+2C)^2 = (2C)^2 \left(1 + \dfrac{y}{2C} \right) \implies x + 2C = \pm 2C \sqrt{\left(1 + \dfrac{y}{2C} \right)}$$
Hence, $$x = -2C \pm 2C \sqrt{\left(1 + \dfrac{y}{2C} \right)} = 2C \left( \pm \sqrt{\left(1 + \dfrac{y}{2C} \right)} - 1\right)$$
If you have a constraint that $x$ has the same sign as $C$ (for instance if $x,C > 0$), then $$x = 2C \left(\sqrt{\left(1 + \dfrac{y}{2C} \right)} - 1\right)$$