As at Jordan normal form (Basis)
we see here the method of finding some column vector $r_5,$ such that $C^3 r_5 = 0$ but $C^2 r_5 \neq 0.$ Once we choose that, we are forced to take $r_4 = C r_5,$ then column $r_3 = C r_4.$ This becomes an eigenvector because $Cr_3 = C^2 r_4 = C^3 r_5 = 0.$
I have picked $r_5 = (0,0,0,0,-1)^T$ and finished up. The other null vector $r_2$ can be anything in the two- dimensional subspace of genuine zero eigenvectors, so more choices are possible.
$$
\left(
\begin{array}{ccccc}
1&0&0&0&0 \\
0&-1&1&0&0 \\
0&-1&0&1&0 \\
-1&1&0&0&0 \\
0&-1&0&0&-1 \\
\end{array}
\right)
\left(
\begin{array}{ccccc}
1&0&0&0&0 \\
1&0&0&1&0 \\
1&1&0&1&0 \\
1&0&1&1&0 \\
-1&0&0&-1&-1 \\
\end{array}
\right) =
\left(
\begin{array}{ccccc}
1&0&0&0&0 \\
0&1&0&0&0 \\
0&0&1&0&0 \\
0&0&0&1& 0\\
0&0&0&0&1 \\
\end{array}
\right)
$$
$$
\left(
\begin{array}{ccccc}
1&0&0&0&0 \\
0&-1&1&0&0 \\
0&-1&0&1&0 \\
-1&1&0&0&0 \\
0&-1&0&0&-1 \\
\end{array}
\right)
\left(
\begin{array}{ccccc}
1&0&0&0&0 \\
1&-1&0&0&-1 \\
1&-1&0&0&-1 \\
0&0&0&0&-1 \\
-1&1&0&0&1 \\
\end{array}
\right)
\left(
\begin{array}{ccccc}
1&0&0&0&0 \\
1&0&0&1&0 \\
1&1&0&1&0 \\
1&0&1&1&0 \\
-1&0&0&-1&-1 \\
\end{array}
\right) =
\left(
\begin{array}{c|c|ccc}
1&0&0&0&0 \\ \hline
0&0&0&0&0 \\ \hline
0&0&0&1&0 \\
0&0&0&0& 1\\
0&0&0&0&0 \\
\end{array}
\right)
$$
$$
\left(
\begin{array}{ccccc}
1&0&0&0&0 \\
1&0&0&1&0 \\
1&1&0&1&0 \\
1&0&1&1&0 \\
-1&0&0&-1&-1 \\
\end{array}
\right)
\left(
\begin{array}{c|c|ccc}
1&0&0&0&0 \\ \hline
0&0&0&0&0 \\ \hline
0&0&0&1&0 \\
0&0&0&0& 1\\
0&0&0&0&0 \\
\end{array}
\right)
\left(
\begin{array}{ccccc}
1&0&0&0&0 \\
0&-1&1&0&0 \\
0&-1&0&1&0 \\
-1&1&0&0&0 \\
0&-1&0&0&-1 \\
\end{array}
\right) =
\left(
\begin{array}{ccccc}
1&0&0&0&0 \\
1&-1&0&0&-1 \\
1&-1&0&0&-1 \\
0&0&0&0&-1 \\
-1&1&0&0&1 \\
\end{array}
\right)
$$