Possible Duplicate:
How to prove this binomial identity $\sum_{r=0}^n {r {n \choose r}} = n2^{n-1}$?
$$\begin{align} &\sum_{k=0}^n k \binom{n}{k} =\\ &\sum_{k=0}^n k \frac{n!}{k!(n-k)!} =\\ &\sum_{k=0}^n k \frac{n(n-1)!}{(k-1)!((n-1)-(k-1))!} = \\ &n\sum_{k=0}^n \binom{n-1}{k-1} =\\ &n\sum_{k=0}^{n-1} \binom{n}{k} + n \binom{n-1}{-1} =\\ &n2^{n-1} + n \binom{n-1}{-1} \end{align}$$
- Do I have any mistake?
- How can I handle the last term?
(Presumptive) Source: Theoretical Exercise 1.12(a), P18, A First Course in Pr, 8th Ed, by S Ross