1

$$\sum _{r=0}^4 \tan \left( \frac{\pi}{15}+\frac{r\pi}{5} \right)=k \sqrt{3}$$. Then evaluation of $k$

solution i try

$$\tan(12^\circ)+\tan(48^\circ)+\tan(84^\circ)+\tan(120^\circ)+\tan(156^\circ)$$

$$=\tan(12^\circ)+\tan(48^\circ)+\tan(84^\circ)+\tan(156^\circ)+\sqrt{3}$$

$$=\frac{\sin(60^\circ)}{\cos(12^\circ)\cos(48^\circ)}+\frac{\sin(240^\circ)}{\cos(84^\circ)\cos(156^\circ)}-\sqrt{3}.$$

plz help me how to simplify denominator.

jacky
  • 5,194

1 Answers1

1

$$S=\tan(12^\circ)+\tan(48^\circ)+\tan(84^\circ)+\tan(120^\circ)+\tan(156^\circ)$$

$$S=\tan(12^\circ)+\tan(48^\circ)+\tan(84^\circ)+\tan(156^\circ)+\sqrt{3}$$

$$S=\frac{\sin(60^\circ)}{\cos(12^\circ)\cos(48^\circ)}+\frac{\sin(240^\circ)}{\cos(84^\circ)\cos(156^\circ)}-\sqrt{3}.$$

$$S=\frac{\sqrt{3}}{\cos (60^\circ)+\cos(36^\circ)}-\frac{\sqrt{3}}{\cos(240^\circ)+\cos(72\circ)}-\sqrt{3}$$

use $\displaystyle \cos (36^\circ)=\frac{\sqrt{5}+1}{4}$ and $\displaystyle \cos(72^\circ)=\sin(18^\circ)=\frac{\sqrt{5}-1}{4}$

$$=4\sqrt{3}\bigg[\frac{6}{4}\bigg]-\sqrt{3}=5\sqrt{3}$$

jacky
  • 5,194